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A starting point



Contribution
The maximum entropy principle states that, given partial information
about a random variable (rv), it should be modelled using the distribution
that satisfies the known constraints and has the maximum entropy

H(x) =
∑
x

px log px

For a rv Z ∈ R, then then the normal distribution N(µ, σ2) is
characterized by the property of having maximum entropy for given mean
and given variance.
Kemp (1997) showed that a discrete analogue of the normal attains this
for rv in Z. The pmf is given by

P(X = x) = px =
λxqx(x−1)/2

∞∑
y=−∞

λyqy(y−1)/2

, x = . . . ,−2,−1, 0, 1, 2, . . .

for λ = q1/2 and q = exp(−1/β) we get a distribution with mean equal

to 0 and variance equal to β.



Today

Today:

I Present models/distributions for discrete random variables
defined in Z = {. . . ,−2,−1, 0, 1, 2, . . .}, i.e. the set of
all integers including the negative ones.

I There are several mechanisms that lead to such a random
variable.

I Define time series models

I Discuss applications



Data in Z

How to obtain such data?
Mostly as the difference of two count variables

I Tick data: price movements in finance

I Score difference in football

I Before and after studies in biostatistics

I Pixel intensity (discrete colors)

I Differencing discrete valued time series to achieve
stationarity.



Plan for today

I Define models/distributions in Z
I Extend to the bivariate case

I Consider time series

I Some data application

Can you name a distribution in Z?
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How to define distributions in Z?

I Take the difference of two random variables in N
I Round continuous distributions

I Discrete analogues - discretize

I Random sign



Difference of two discrete distributions in N.

Consider two random variables, say X and Y taking values in
N . Then the random variables Z = X − Y will take values in
Z and the probability mass function (pmf) will be given as

P(Z = z) =
∞∑

k=max{0,−z}

P(X = z + k ,Y = k)

This implies that given the choice of the distributions we can
create a huge number of distributions.
Assumption of independence makes things easier!

Example: Consider two independent rv that follow Poisson
distributions and take their difference (nown as Skellam
distriubution)



Rounding

I Consider a rv X ∈ R (e.g. normal or the Laplace or the
logistic etc )

I Consider the integer part of the continuous variable!

Note that this kind of rounding is not unique
If the underlying continuous random variable X has the
survival function SX (x) = P(X ≥ x) then the random variable
Z = bX c denoting the largest integer less or equal to X will
have the probability mass function

P(Z = z) = P(z ≤ X ≤ z + 1) = SX (z)− SX (z + 1) . (1)

If X is defined in R then Z ∈ Z.



Rounding

I For any given continuous distribution, it is possible to
generate corresponding discrete distributions based on
(1).

I One can write X = Z + U where U is the fractional part
that has been chopped.

I This provides an easy way to derive the moments of the
discretized version based on those of the continuous ones.
Note that 0 < E (U) < 1 and 0 < Var(U) < 1/4.



Discrete analogue of a continuous distribution

Alternatively one may define the discrete analogue of a
continuous distribution with density f (·) by considering
discretization

P(Z = z) =
f (z)
∞∑

j=−∞
f (j)

. (2)

I This is the derivation of the discrete normal by
Kemp(1997)!

I This approach avoids the calculation of the integral
involved in the survival function at the cost of deriving
the normalizing constant which is an infinite sum.

I In practice this is approximated by a finite sum. For a
discussion about such constructions see Chakraborty
(2015)



Random Sign

I A different approach is based on assigning a random sign
to some discrete variable defined in N.

I Define a random variable Z based on the random variable
X ∈ N as

Z =

{
X , with probability p
−X , with probability 1− p

. (3)

I This allows the representation Z = WX where W takes
the values 1 and −1 with probabilities p and 1− p
respectively. (known as Rademacher distribution)

I Extensions assuming that W can take values −1, 0, 1 are
also possible. (generate zero inflated models)



The Skellam Distribution

If X and Y follow independent Poisson distributions with parameters
θ1 > 0 and θ2 > 0 respectively, then the random variable Z = X − Y has
probability function given by

P(Z = z |θ1, θ2) = e−(θ1+θ2)

(
θ1

θ2

)z/2

I|z|

(
2
√
θ1θ2

)
, z ∈ Z, θ1, θ2 > 0,

where Ir (x) is the modified Bessel function of order r

Ir (x) =
(x

2

)r ∞∑
m=0

(
x2

4

)m
m!Γ(r + m + 1)

.

We will denote this distribution as the Skellam(θ1, θ2) distribution.



Properties

I Mean: E(Z ) = θ1 − θ2

I Variance: Var(Z ) = θ1 + θ2,

I For large values of the θ1 + θ2 the distribution can be well
approximated by the normal distribution.

I If θ2 is very close to 0, then the distribution tends to a
Poisson distribution.

I Consider two independent random variables
Z1 ∼ Skellam(θ1, θ2) and Z2 ∼ Skellam(θ3, θ4). Then the
sum S2 = Z1 + Z2 follows a Skellam(θ1 + θ3, θ2 + θ4)
distribution, while the difference D2 = Z1 − Z2 follows a
Skellam(θ1 + θ4, θ2 + θ3) distribution.



Some plots



Properties

I Note: The Skellam distribution is not necessarily that of
the difference of two uncorrelated Poisson random
variables (Karlis and Ntzoufras (2006)); we can derive the
Skellam distribution as the difference of other distributions
as well, which motivates its use in various applications.

I To see that, consider Xi , i = 1, 2, 3 to be 3 independent
variables, with X1 and X2 following Poisson distributions,
and X3 following any discrete distribution. Then X1 + X3

and X2 + X3 are not independent but their difference,
X1 − X2, follows a Skellam distribution.

I So we can have very many different generating
mechanisms



Extensions

I A reparametrized version of the distribution is used, with
mean µ = θ1 − θ2 and variance σ2 = θ1 + θ2. We will
denote this by Skellam2(µ, σ2).

I This allows for better interpretation of the parameters but
also more advanced modeling approaches, such as
regression.

I Consider

Yi ∼ Skellam2(µi , σ
2)

µ1 = β0 + β1Xi1 + . . . + βkXik

to define a Skellam regression model.



Extensions

I Zero inflated version (Karlis and Ntzoufras, 2006) for
biostat applications

I Zero deflated version (Koopman et al., 2017). for
financial application.

I Truncated Skellam distribution.(Ntzoufras et al., 2021)
for volleyball

I Finite mixture of Skellam distribution (Jiang et al., 2014)
for clustering in bioinformatics.



Other distributions as difference
I Shahtahmassebi and Moyeed (2016): Generalized Poisson

Difference distribution (GPDD)

I Ong et al. (2008) proposed the family of pmfs of the random
variable Z of the form Z = X − Y in terms of the Gauss
hyper-geometric function 2F1( ; ; ), where the random variables X
and Y come from the Panjer family of distributions.

I Inusah and Kozubowski (2006): discrete skew discrete Laplace as
the difference of two independent geometric variables,

I Bourguignon and Vasconcellos (2016): difference of independent
geometric and Poisson variables.

I Chesneau et al. (2022) difference of two independent
Poisson-Lindley random variables with the same common
parameter.

I Castro (1952): difference between two binomial distributions

I Omair et al. (2016) : difference of two trinomial distributions

I Kemp (1997) showed that the discrete normal can be derived as the
difference of two Heine distributions



Other distributions - Discrete Laplace

Kozubowski and Inusah (2006) proposed the discrete
skew-Laplace distribution from the continuous skew-Laplace
model using discretization with pmf

P(Z = z) =


(1− p)(1− q)

1− pq q|z|, z = . . . ,−2,−1

(1− p)(1− q)
1− pq pk , z = 0, 1, 2, . . .

(4)

with p, q ∈ (0, 1).
For p = q, the discrete skew-Laplace reduces to the symmetric
discrete Laplace in Inusah and Kozubowski (2006) and for
either p = 0 or q = 0, (4) reduces to the geometric
distribution.



Discrete Laplace 2 - using rounding

Barbiero (2014) derived a discrete Laplace distribution based
on rounding The pmf is now

P(Z = z) =


1

log(pq)
log(p)[q−(z+1)(1− q)] z = . . . ,−2,−1

1
log(pq)

log(q)[pz(1− p)] z = 0, 1, 2, . . . ,

with p, q > 0.



Other

I Chakraborty and Chakravarty (2016): discrete logistic
distribution

I Bhati et al. (2020): discrete skew logistic as

I Chakraborty et al. (2021) : discrete Gumbel distribution

I Roy (2003) : discrete normal distribution .

I Ord (1968) defined a discrete Student t-distribution .

What is the next?



Random Sign

Example: If X follows a Poisson distribution with mean λ and
W follows a Rademacher distribution that gives probability p
to W = −1 and (1− p) to W = 1, then Z = WX follows a
signed Poisson distribution (also called an extended Poisson
distribution).

I If p = 0.5 the distribution is symmetric and has zero
mean and variance λ2 + λ.

I With p 6= 0.5 the distribution has mean λ(2p − 1) and
variance λ2(4p − 4p2) + λ.

I For large values of λ the distribution is bimodal.

I For values of λ near 0 the distribution has high probability
at 0.

I For certain parameter values the distribution can have a
flat mode.



Signed Poisson



Another one

Xu and Zhu (2022) defined a distribution using Z = WX
where W takes values -1,0,1 with probabilities ρ, 1− 2ρ and ρ
respectively and X follows a geometric distribution with pmf

P(X = k) = µ(1− µ)k−1, k = 1, 2, . . .

This gives large probability at 0



Signed Geometric



Bivariate Distribution on Z2

I A bivariate Skellam distribution can be derived using the
trivariate reduction method (Bulla et al., 2015).

I Assume that Yj ∼ Poisson(λj), independently. Then
Z1 = Y1 − Y0 and Z2 = Y2 − Y0 follow a bivariate
Skellam distribution with parameters λ0, λ1, λ2 and joint
pmf given by

P(Z1 = z1,Z2 = z2) = exp (λ0 + λ1 + λ2)×

λz1
1 λ

z2
2

∞∑
j=s

(λ0λ1λ2)j

(z1 + j)!(z2 + j)!j !

for all (z1, z2) ∈ Z2, where s = max{0,−z1,−z2}.
I For λ0 = 0 we get two independent Poisson variates
I for λ0 > 0, the covariance of the distribution is given by
λ0.

I The mean and the variance of Zj is λj − λ0 and λj + λ0

respectively, for j = 1, 2.



Bivariate Distribution on Z2

Genest and Mesfioui (2014) extended this model to some more
complex models. Let λ1 = min(λ11, λ21) > 0 and for fixed
θ ∈ [0, λ1], let Y0,Y1,Y2 be mutually independent random
variables such that

Y1 ∼ Skellam(λ11 − θ, λ12),

Y2 ∼ Skellam(λ21 − θ, λ22), and

Y0 ∼ Poisson(θ),

where θ ≥ 0, and with Y0 = 0 if θ = 0.
Then the pair Z1 = Y1 + Y0,Z2 = Y2 + Y0 follows a bivariate
Skellam distribution of the first kind, since the sum of a
Skellam and a Poisson variate is again a Skellam variate.



Bivariate Distribution on Z2

The second model uses λ2 = min(λ12, λ22) > 0 and
Θ = (θ1, θ2) ∈ [0, λ1]× [0, λ2]. Then let Y0,Y1,Y2 be
mutually independent random variables such that

Y1 ∼ Skellam(λ11 − θ1, λ12 − θ2) ,

Y2 ∼ Skellam(λ21 − θ1, λ22 − θ2) and

Y0 ∼ Poisson(θ).

The pair Z1 = Y1 + Y0,Z2 = Y2 + Y0 follows a bivariate
Skellam distribution of the second kind.



Comments

I Both models allow for only positive correlation.

I To allow for negative correlation Genest and Mesfioui
(2014) considered a trivariate reduction of the form
Z1 = Y1 + Y0,Z2 = Y2 − Y0 which now leads to negative
correlation since Y0 enters with a different sign.

I Properties and estimation about the models are also
provided. Further results on estimation of the models are
provided in Aissaoui et al. (2017).



Model Based on copula

We assume that marginally both of the Y1 and Y2 follow a
Skellam distribution with parameters µj , σ

2
j , j = 1, 2, coupled

with some copula C (·, ·; θ), where θ is the dependence
parameter.
For the bivariate case with marginals F (y1) and G (y2) one can
derive the joint pmf as

P(Y1 = y1,Y2 = y2) = C
(
F (y1),G (y2); θ

)
− C

(
F (y1 − 1),G (y2); θ

)
−

C
(
F (y1),G (y2 − 1); θ

)
+ C

(
F (y1 − 1),G (y2 − 1); θ

)

Example: Use Gumbel copula

C (u, v ; θ) = exp
(
−((− log(u))θ + (− log(v))θ)1/θ

)
.



Example
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Figure: Marginal distributions are Skellam µ1 = 0.5 µ2 = 0.5,
σ2

1 = 15 , σ2
2 = 14 and varying copula parameter for the Gumbel

copula. The values are 1 (independence),2,3 and 5.



Time Series models

How to extend the AR(1) model

Yt = φYt−1 + εt

to integers in N?

Use of some thinning like the binomial
thinning

Yt = α ◦ Yt−1 + Rt

I α ◦ X ∼ Binomial(α,X ) or X = α ◦ X =
X∑
i=1

Wi where

Wi ’s are independent Bernoulli rv. (Steutel and Harn,
1979)

I Rt is a sequence of uncorrelated non–negative
integer–valued random variables having mean µ and finite
variance σ2 (also called innovations)
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INAR models

This is the INAR(1) model with huge extensions (Al-Osh and
Alzaid, 1987; McKenzie, 1985)

I different thinning operations

I different innovation distributions

I dependence between thinning and innovations

I many others

How to do it for random variables in Z?

Need to define appropriate thinning.
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Signed binomial thinning

I The operator � is the signed binomial thinning operator
defined as (Kim and Park, 2008)

α� X =

 sgn(α)sgn(X )
|X |∑
j=1

Wj(|α|), X 6= 0

0, X = 0

(5)

where Wj(α) is Bernoulli random variable with success
probability |α| and sgn(X ) = 1 if X > 0 and -1 if X < 0.

I For α,X > 0 the operator coincides with the binomial
thinning operator.

I α ∈ (−1, 1) and is the parameter that relates to the
autocorrelation properties of the model.

I Preserves the integer value nature of the process and
allows the process to take values in Z.



Signed binomial thinning

The signed binomial thinning operator implies that

α� X ≡


Y , α < 0, X < 0
−Y , α < 0, X ≥ 0
−Y , α > 0, X < 0
Y , α > 0, X ≥ 0

,

with Y ∼ Binomial(|α|, |X |).
Based on standard properties of binomial random variables we
have

E(α� X | X ) = αX

Var(α� X | X ) = |α|(1− |α|)|X |.

When X ≥ 0 and α ≥ 0, the signed binomial thinning reduces
to the binomial thinning.



Signed thinning operator

An earlier version of signed thinning is given in Latour and
Truquet (2008). Let {Yi}∞i=1 be a sequence of i.i.d.
integer-valued random variables with F being their common
distribution, independent of an integer-valued random variable
X . The signed thinning operator, denoted by F◦ , is defined by

F ◦ X =

 sgn(X )
|X |∑
i=1

Yi , if X 6= 0

0, otherwise

. (6)

The sequence {Yi}∞i=1 is referred to as a counting sequence. If
the counting sequence Yi is of Bernoulli type this is related to
the signed binomial thinning operator.



More thinning

Recall that the standard INAR model, extends to

Xt = S(Xt−1) + Rt ; t = 0, 1, 2, . . . , (7)

where S(X ) is some distribution conditional on X ; in the case
of binomial thinning operator, a binomial distribution.
Extend to the case of Z



More thinning - not that easy

The operator is defined as

Sα,θ(Z ) = sgn(Z )

|Z |∑
i=1

ξi +

Y (Z)∑
j=1

ηi

where Z is a Z-valued random variable and Y (Z ) follows a
Bessel distribution with parameters |z | and θ (see, Devroye,
2002), while ξi are Bernoulli random variables with
P(ξi = 1) = 1− P(ξi = 0) = α independent of ηi , Z and
Y (Z ) . Furthermore ηi is a sequence of i.i.d. random variables
independent of Z and Y , with probability mass function
P(ηi = 1) = P(ηi = −1) = α(1− α) and
P(ηi = 0) = 1− 2α(1− α), α ∈ [0, 1].
The underlying distribution of Sα,θ(Z ) conditional on Z is an
extended binomial distribution.



Rounded thinning operator

Kachour and Yao (2009) defined a rounding operator by
assuming

S(x) = 〈x〉

where 〈x〉 stands for the closer integer value to X . In fact this
does not assume some distribution, it is deterministic and
simply transforms the data to be discrete.



More ...
Let I (A) be the indicator function for A,
∆(X ) = {z ∈ Z : z ≤ x}, x ∈ R and

B(x) =
[∆(x1/2) + 1]2 − x

[∆(x1/2) + 1]2 − [∆(x1/2)]2
,

for x ≥ 0. The operator is defined as

�(x ,U) = ∆(x) + I (U ≥ 1 + ∆(x)− x) , x ∈ R

where U is a uniform random variable defined on the interval
[0, 1].
The operator returns an integer, selecting between two
successive integers with some probability. For example for
x = −4.33, it will give back −4 with probability 0.67 and −5
with probability 0.33, taking into account the decimal part of
the number for this selection probability.



True INAR model (Freeland, 2010).

A new thinning operator, denoted as ∅ , which is a kind of
binomial thinning operator acting on two latent random
variables, can be defined as follows:

α∅Zt−1|Zt−1 = α ◦ Xt−1 − α ◦ Yt−1|Xt−1 − Yt−1.

The model is defined as an integer valued stochastic process
such that

Zt = α∅Zt−1 + εt , t = 0, 1, 2, . . .

where εt is an innovation term defined in Z.



Lot of extensions

Different models generated by considering the difference of two latent processes. Note
that ◦ refers to binomial thinning, ∗ to negative-binomial thinning and QB to
quasi-binomial thinning. Xt and Yt are the two latent non-negative processes. P
stands for Poisson and G for geometric, GP is genetalized Poisson

Latent processes Reference Xt Yt Means
α ◦ Xt − α ◦ Yt Freeland (2010) P P Same
α ∗ Xt − α ∗ Yt Nastić et al. (2016) G G Same
α ∗ Xt − α ∗ Yt Barreto-Souza and Bourguignon (2015) G G Diff
α ∗ Xt − β ∗ Yt Djordjević (2017) G G Diff
α ∗ Xt − α ◦ Yt Bourguignon and Vasconcellos (2016) G P Diff

QB(Xt)− QB(Yt) Da Cunha et al. (2018) GP GP Diff



INAR type models based on signed binomial

thinning

The INAR-model with the signed binomial thinning operator of
order p is defined in Kim and Park (2008) as

Zt =

p∑
j=1

αj � Zt−1 + εt , t = 0, 1, 2, . . . (8)

by assuming that the innovations εt is a sequence of variables
in Z and the operator � is the signed binomial thinning
operator defined as in (5). The model is called integer-valued
autoregressive process of order p with signed binomial thinning
(INARS(p)).



More

I Kachour and Truquet (2011) used the signed thinning
operator, to derive an order p model The authors avoid,
however, a parametric assumption for the innovation
term.

I Under a parametric assumption on the common
distribution of the counting sequence of the model,
Chesneau and Kachour (2012) focused on the parametric
SINAR(1) model. They used different choices for the
distribution of the counting sequence.

I For example, a natural extension of Bernoulli random
variates Yi to variates in Z implies that
P(Yi = −1) = (1− α)2, P(Yi = 0) = 2α(1− α) and
P(Yi = 1) = α2 where α ∈ (0, 1). They also discussed
the marginal distribution of the process under different
scenarios.



Models based on rounding

Kachour and Yao (2009) defined a model based on a rounding
operator. The p-th order model assumes that

Zt =

〈 p∑
j=1

ajZt−j + λ

〉
+ εt , t = 0, 1, 2, . . .

where < · > denotes the rounding operator and εt is a
sequence of i.i.d. innovations defined in Z. This model is the
Rounded INAR of order p, (RINAR(p)).
The RINAR(p) model is a direct and natural extension on Z of
the AR(p) model for real valued data, for which the rounding
operator is a censoring function.



A Skellam INAR model

Let εt be a sequence of i.i.d. random variables following the
Skellam distribution, namely εt ∼ Skellam(θ1, θ2). The
PDINAR(1) (Poisson difference of order 1) process Zt is
defined by

Zt = δSα,θ(Zt−1) + εt , t = 0, 1, 2, . . .

where Sα,θ(Zt−1) is the extended binomial thinning operator
and δ is a parameter with possible values 1 and −1 describing
the sign of the correlation (Alzaid and Omair, 2014).



Pergam
Pegram’s operator ? is used to mix two (or more) independent
discrete random variables U and V over the same sample
space S to produce a new random variable Z .

Z = (U , φ) ? (V , 1− φ) ;

implies that Z takes the value U with probability φ and the
value V with probability 1− φ. Then the marginal probability
of Z is given by P(Z = j) = φP(U = j) + (1− φ)P(V = j).
This can be generalized to the case of k variables,

Z = (U1, φ1) ? . . . ? (Uk , 1−
k−1∑
j=1

φj)

For a time series in Z the idea is to construct an order p
process as

Zt = (Zt−1, φ1)?. . . (Zt−p, φp)?(εt , 1−φ1−. . .−φp), t = 0, 1, 2, . . .

where εt is a random variable in Z.



Bivariate models

We consider the extension of the signed thinning operator to
the bivariate case.
Let F⊕ = {Fi ,j◦} be an 2× 2 matrix of signed thinning
operators. Let Z = (Z1,Z2)T be an integer-valued random
vector. The effect of F⊕ on Z , denoted by F⊕Z, is defined by

F⊕
(

Z1

Z2

)
=

(
F11 F12

F21 F22

)
⊕
(

Z1

Z2

)
=

(
F11 ◦ Z1 + F12 ◦ Z2

F21 ◦ Z1 + F22 ◦ Z2

)
This is called the signed matricial-thinning operator, denoted
by F⊕.



Bivariate models

Bulla et al. (2017) defined the B-SINAR(1) (for Bivariate
Signed INteger-valued AutoRegressive) process if it admits the
following representation(

Z1t

Z2t

)
= F⊕

(
Z1,t−1

Z2,t−1

)
+

(
ε1t

ε2t

)
, t = 0, 1, 2, . . .

where for any j = 1, 2, εjt is a sequence of i.i.d integer-valued
random variables, with mean µj and variance σ2

εj
, and

independent of all counting sequences of the model. Note that
ε1t and ε2t can be correlated.



Skellam Process

Resembles Brownian motion on the integers.
A Skellam process is defined as

Z (t) = N1(t)− N2(t), t ≥ 0,

where N1(t) and N2(t), t ≥ 0 are two independent
homogeneous Poisson processes with intensities λ1 > 0 and
λ2 > 0, respectively.
Barndorff-Nielsen et al. (2012) also considered the
discrete-Laplace, from the difference of two geometric
distributions, and the difference of two negative binomial
distributions. The models were applied to finance problems.



Extensions

I Extensions to frcational Skellam process Kerss et al.
(2014) Gupta et al. (2020) described a Skellam process of
order k , which allows for larger jumps at each step
(basketball application)

I Kataria and Khandakar (2021) further extended this to
fractional Skellam processes of order k .

I Koopman et al. (2014) proposed a dynamic Skellam
model for observations measured over time with serial
correlation modeled via stochastically time-varying
intensities of the underlying Poisson counts.

I Koopman et al. (2018) extended this to the multivariate



INGARCH models

The Poisson INGARCH(p, q) (Weiß, 2018) is defined as

Xt | Ft−1 ∼ Poisson(λt)

λt = β0 +

p∑
i=1

βiλt−i +

q∑
j=1

αjXt−j , t = 0, 1, 2, . . .

where Ft is the available information up to time t, and all α’s
and β’s must be positive.
Extend to the Z



Symmetric Skellam

The first model described in Alomani et al. (2018) assumes
that

Zt | Ft−1 ∼ Skellam2(µ = 0, σ2) t = 0, 1, 2, . . .

σ2
t|t−1 = α0 + α1Z

2
t−1 + βσ2

t−1|t−2

for suitable values of (α0, α1, β) to keep the variance positive.
In this notation σ2

t|t−1 is the variance of the Skellam at time t
conditional on the variance at the point t − 1.



An asymmetric Skellam

Cui et al. (2021) developed a model based on asymmetric
Skellam distribution. The model is defined as

Zt | Ft−1 ∼ Skellam(µ2
1t , µ

2
2t) t = 0, 1, 2, . . .

µ2
1t = α0 + α1Z

2
t−1 + βµ2

1,t−1,

µ2
2t = α∗0 + α1Z

2
t−1 + βµ2

2,t−1.

Note the common parameters α1 and β. If we add the two
parts to create the variance of the Skellam distribution we get

σ2
t|t−1 = µ2

1t + µ2
2t = (α0 + α∗0) + 2α1Z

2
t−1 + β(µ2

1,t−1 + µ2
2,t−1)

and thus if α0 = α∗0 we get the model for the symmetric case
of Alomani et al. (2018).



The Generalized Poisson Difference model

Let X ∼ GP(θ1, λ) and Y ∼ GP(θ2, λ), 0 ≤ λ < 1, θ1, θ2 > 0
and they are independent. Carallo et al. (2020) proposed a
model based on the generalized Poisson difference distribution.
For λ = 0 the two distributions are simple Poisson and we get
the Skellam. Using µ = θ1 − θ2 and σ2 = θ1 + θ2, we denote
the distribution GPDD(µ, σ2, λ).
The model assumes that Zt | Ft−1 ∼ GPDD(µt , σ

2
t , λ) and

then we have

µt = α0 +

p∑
i=1

βiµt−i +

q∑
j=1

αjZt−j

for α0 ∈ R, αi ≥ 0 and βj ≥ 0, for i = 1, . . . , p, j − 1, . . . , q
while

σ2
t = |µt |φ, φ > (1− λ)−2 .



Another INGARCH

The model in Hu and Andrews (2021) is slightly different; the
observed series is Zt = WtXt where Xt | Ft−1 ∼ Poisson(λt)
and Wt is a random sign, that takes the value −1 and 1 with
equal probability. Then

λt =

√
1 + 4ηt − 1

2

ηt = α0 +

p∑
j=1

βjηt−j +

q∑
i=1

αi (|Zt−i | − γZt−i)
2

The marginal distribution of Zt is not Skellam but rather the
signed Poisson distribution



GJR GARCH model
The GJR GARCH model of Xu and Zhu (2022) is defined as
with Xt | Ft−1 following a shifted geometric distribution on
1, 2, . . . with parameter φt = {[ρ2 + 4ρηt ]

1/2 − ρ}/ηt . where
ηt is defined in (??) and Wt is a random variable with

P(Wt = k) =


ρ k = −1,
1− 2ρ k = 0,
ρ k = 1,
0 otherwise.

Glosten–Jagannathan–Runkle GARCH (GJR-GARCH) is popular in accounting for

asymmetric responses in the volatility



Difference on INGARCH processes

Gonçalves and Mendes-Lopes (2020) considered models for
families defined as the difference between two integer valued
processes, Zt = X1t − X2t where Xit , i = 1, 2 is some integer
valued process. They considered examples of geometric
GARCH processes with X1t |X1,t−1 and X2t |X2,t−1 geometrically
distributed and analyzed some properties of the process Zt .
The geometric INGARCH process Xt , t = 0, 1, 2, . . . is a
particular case of the negative binomial INGARCH process with

P(Xt = k |Xt−1) =
1

1 + λt

(
1− 1

1 + λt

)k

, k = 0, 1, 2, . . .

and

λt = α0 +

p∑
j=1

βjλt−j +

q∑
i=1

αiXt−1.



Difference on INGARCH processes
The distribution of Zt = X1t − X2t is a discrete skew-Laplace

P(Zt = k |X1,t−1,X2,t−1) =


1

1 + λ1t + λ2t

(
λ1t

1 + λ1t

)k
, k = 0, 1, 2, . . .

1
1 + λ1t + λ2t

(
λ2t

1 + λ2t

)−k
, k = . . . ,−2,−1,

which is a reparametrized version of (4). Then they assumed
INGARCH dynamics in the difference:

λjt = α0 +

p∑
m=1

βmλj ,t−m +

q∑
i=1

αiZj ,t−i

for j = 1, 2. The model assumes that both integer series and
their difference are observed something that perhaps lacks
practicality.



Some Data Application

I The data are 251 daily differences between the closing
and opening prices of the Saudi Telecom asset in 2012.

I Since these differences are usually measured in tenths of
the currency, we work with the rescaled time series
(closing price minus opening price) × 10, which we call
number of ticks.

I The number of ticks belongs to Z.
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The Models

True INAR Freeland (2010) TINAR
Discrete-Laplace INAR model Nastić et al. (2016) DLINAR
Skew INAR Barreto-Souza and Bourguignon (2015) SINARZ
New Skew INAR model Bourguignon and Vasconcellos (2016) NSINAR
Poisson Difference Alzaid and Omair (2014) PDINAR
Skellam INAR Andersson and Karlis (2014) SINARS
Parametric Signed INAR model Chesneau and Kachour (2012) PSINARSym

PSINARAsym



Some info

I Yule-Walker estimation

I Parametric bootstrap standard errors (1000 replications)

I All models are autoregressive of order one with
exponentially decaying auto-correlations so they fit the
same autocorrelation - compare the marginals



Results

The P-P plots for the stock market data compared to that of
all the considered models
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Fitted models

Model α̂ Other Parameters Marginal Distribu-

tion

Innovation Distri-

bution

MSE

TINAR 0.1795 λ̂= 7.4953 Skellam Skellam 0.0124

(0.0623) (0.7886)

PDINAR 0.1795 θ̂1=7.6267 θ̂27.1950 Skellam Skellam 0.0128

(0.0659) (0.8222) (0.7988)

SINARZ 0.1795 θ̂1=8.7506 θ̂2=8.3191 Unknown Skellam 0.0129

(0.0633) (0.7991) (0.7912)

DLINAR 0.1795 μ̂=2.5635 Discrete Laplace Not standard 0.0029

(0.0602) (0.2192)

SINARZ 0.1795 μ̂1=2.6385 μ̂2= 2.1126 Skew Laplace Not Standard 0.0031

(0.0648) (0.3458) (0.2757)

NSINAR 0.1795 μ̂ =3.4262 λ̂=2.9003 Difference of a geo-

metric and a Poisson

Not Standard 0.0070

(0.0647) (0.3720) (0.2783)

PSINAR 0.1795 λ=0.9308 Unknown Symm. Poisson 0.0049

(0.0647) (0.1599)

PSINAR 0.1795 p̂= 0.0590 λ̂=2.9001 Unknown Asym. Poisson 0.0094

(0.0709) (0.0503) (0.16782)



Remarks

I A rather new era

I Quite fertile

I Extending results from R and N.

I Is just discretizing known models sufficient?

I Computational challenges
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